2.6 Persamaan Kuadratik, SPM Praktis (Kertas 2)


2.6 Persamaan Kuadratik, SPM Praktis (Kertas 2)
Soalan 1:
(a)  Cari nilai-nilai k supaya persamaan (1 – k) x2 – 2(k + 5)x + k + 4 = 0 mempunyai punca yang sama.
Seterusnya, cari punca persamaan itu berdasarkan nilai-nilai k yang diperoleh.
(b)  Diberi lengkung y = 5 + 4x x2 mempunyai persamaan tangen dalam bentuk y = px + 9. Hitung nilai-nilai p yang mungkin.

Penyelesaian:
(a)
Bagi punca-punca yang sama,
b2 – 4ac = 0
[–2(k + 5)] 2 – 4(1 – k)( k + 4) = 0
4(k + 5) 2 – 4(1 – k)( k + 4) = 0
4(k2 + 10k + 25) – 4(4 – 3k k2) = 0
4k2 + 40k + 100 – 16 + 12k + 4k2 = 0
8k2 + 52k + 84 = 0
2k2 + 13k + 21 = 0
(2k + 7) (k + 3) = 0
k= 7 2 , 3

Jika k= 7 2 , persamaan ialah
( 1+ 7 2 ) x 2 2( 7 2 +5 )x 7 2 +4=0 9 2 x 2 3x+ 1 2 =0  

9x2 – 6x + 1 = 0
(3x – 1) (3x – 1) = 0
x

Jika k = –3, persamaan ialah
(1 + 3)x 2 – 2(–3 + 5)x – 3 + 4 = 0
4x2 – 4x + 1 = 0
(2x – 1) (2x – 1) = 0
x½

(b)
y = 5 + 4x x2 ----- (1)
y = px + 9 ---------- (2)
(1)  = (2), 5 + 4x x2 = px + 9
x2 + px – 4x + 9 – 5 = 0
x2 + (p – 4)x + 4 = 0

Persamaan tangen mempunyai hanya satu titik persilangan, puncanya adalah sama.
b2 – 4ac = 0
(p – 4)2 – 4(1)(4) = 0
p2 – 8p + 16 – 16 = 0
p2 – 8p = 0
p (p – 8) = 0
Maka, p = 0 dan p = 8.

0 comments:

Post a Comment